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Novosel, D. Fault Detection in DC

Microgrids Using Short-Time Fourier

Transform. Energies 2021, 14, 277.

https://doi.org/10.3390/en14020277

Received: 2 November 2020

Accepted: 30 December 2020

Published: 6 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia;
ivan.grcic@fer.hr

2 Quanta Technology, Raleigh, NC 27607, USA; DNovosel@Quanta-Technology.com
* Correspondence: hrvoje.pandzic@fer.hr

Abstract: Fault detection in microgrids presents a strong technical challenge due to the dynamic
operating conditions. Changing the power generation and load impacts the current magnitude
and direction, which has an adverse effect on the microgrid protection scheme. To address this
problem, this paper addresses a field-transform-based fault detection method immune to the mi-
crogrid conditions. The faults are simulated via a Matlab/Simulink model of the grid-connected
photovoltaics-based DC microgrid with battery energy storage. Short-time Fourier transform is
applied to the fault time signal to obtain a frequency spectrum. Selected spectrum features are
then provided to a number of intelligent classifiers. The classifiers’ scores were evaluated using the
F1-score metric. Most classifiers proved to be reliable as their performance score was above 90%.

Keywords: short-time Fourier transform; intelligent classifiers; microgrid; fault detection;
machine learning

1. Introduction

Modern power distribution networks accommodate an increasing number of active
consumers who can change their operating points based on various types of incentives.
A decentralized group of electricity sources, loads and energy storage connected to the
distribution network at a single coupling point is called a microgrid. Since this concept
is still rather new, microgrid operation faces certain issues that the existing literature has
not yet addressed. Dynamic loading, bi-directional power flow, intermittency of local
renewable sources, type of distributed generation (syncronous machines vs. electronically
controlled sources), and variation of fault current have a big impact on the microgrid oper-
ation and protection [1]. Conventional protection was proven ineffective in the microgrid
environment [2], and advanced methods have to be devised. In the last few years, fault
detection based on signal processing and machine/deep learning techniques has gained
popularity. Short-time Fourier transform (STFT), Wavelet transform (WT), Hilbert-Huang
transform (HHT) and S-transform (ST) are common choices for signal analysis. The signal
features extracted by using these techniques are then used as inputs for machine or deep
learning models. Intelligent classifiers, based on machine learning models, have become a
reliable tool with high accuracy.

The rise of photovoltaic renewable energy sources, DC electrical loads, and energy
storage systems spurred the interest in DC microgrids, making them an alternative to
AC microgrids [3]. Modern power electronics and control algorithms enabled efficient
implementation and reliable operation of DC microgrids [4,5]. DC systems have many
advantages over their AC counterpart, such as higher reliability, power quality, transmis-
sion capacity, and less complicated control [6]. However, the protection of DC systems
is more challenging, due to the nature of the DC current. Fast transients and absence
of zero-crossing demand a fast reaction of the protection [7]. The most common faults
in DC microgrids are pole-to-pole (PP), pole-to-ground (PG), and two PG (2PG) faults.

Energies 2021, 14, 277. https://doi.org/10.3390/en14020277 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4163-7916
https://orcid.org/0000-0003-4121-4702
https://doi.org/10.3390/en14020277
https://doi.org/10.3390/en14020277
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14020277
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/2/277?type=check_update&version=2


Energies 2021, 14, 277 2 of 14

Pole-to-pole faults appear to a smaller extent, but can cause extremely high currents and
damage to the equipment. On the contrary, high-impedance faults (HIF) are difficult to
detect because they cause a low rise in the current so protection will not react. Considering
the availability of intelligent classification methods and the problems that concern the DC
system protection, this paper proposes a fast and selective protection method.

2. Related Work and Contribution

Presence of the distributed generation (DG) could lead to inaccurate operation of the
system protection. Challenges that protection faces in DG environment are dynamics in
the fault current magnitude, blinding of protection, unintentional islanding and loss of
mains [1]. To address these challenges, beside conventional methods, advanced methods
have been implemented. These methods are separated to event estimation-based, fuzzy-
based, field transform-based and intelligent fault detection methods [8].

Conventional fault detection methods use fixed thresholds to detect faults, making
them unsuitable for application in a microgrid that accommodated distributed generation
(DG). Overcurrent protection, which is the basic protection method, could fail to detect
a fault in a microgrid environment in both operating modes, grid-connected or islanded.
Namely, false tripping or a failure to trip caused by the fault current level change are
the main issues affecting the overcurrent protection [2]. Differential protection, another
traditional distribution system protection method, was adopted in the microgrid environ-
ment in [9]. It was proved applicable, but the difficulty of determining a multi-terminal
protection zone with several inputs makes it unsuitable. For example, a power line with
a varying number of connected sources and loads requires continuous monitoring and
updating the trip thresholds.

Event estimation-based protection schemes compare analytically obtained models
with real-world measurements to detect faults. In [10], the fault current transient derivative
equations are derived for faults at busbars and feeders and used for the threshold selection.
Since the observed system is DC, the current derivative magnitude during faults is signifi-
cant, making the detection more simple. Moreover, the advantage of this protection scheme,
compared to the traditional differential schemes, is that it works with a multi-terminal
system. However, the analytical model must be very accurate or the protection might fail.

Fuzzy logic offers another, logic-based approach for system protection. The method’s
fundamentals were explained in [11] where it was also applied to the transmission line fault
identification. The identification procedure based on eight rules enabled the differentiation
of line-to-line, line-to-ground, and line-to-line involving ground faults. Furthermore, ten
types of short-circuit faults (phase-to-phase, phase-to-ground, two-phase-to-ground, and
three-phase) occurring at the transmission lines are successfully detected using fuzzy
logic [12]. Line loading and different fault resistances were considered and proven not
to impact the fault identification, which is case effective in over 97% cases. Type-2 fuzzy
logic is a generalization of type-1 fuzzy logic and offers a significant level of imprecision
modeling [13], making it a better choice for complex systems such as microgrids. It is
successfully applied for microgrid protection in both islanded and grid-tied mode of
operation [14]. The presented protection method successfully detects and classifies faults
and determines the fault direction. This protection strategy is immune to the fault location
and type and can protect a microgrid even after a single-phase trip. However, according
to [15], fuzzy logic lacks real-time response, which is crucial for system protection.

Field transform-based methods transform signals from the time domain to a domain
that could provide a more clear insight into the data characteristics. Commonly used
methods that transform signals to frequency domain are Short-time Fourier transform
(STFT), S-transform (ST) and Hilbert-Huang transform (HHT). STFT is introduced to
overcome the drawbacks of the Fourier transform on the confined interval of the signal.
Amplitude-frequency characteristic obtained by STFT is used for fault detection in most
of STFT-based fault detection methods. HVDC (High Voltage Direct Current) protection
against pole-to-pole faults based on STFT is proposed in [16]. The current of the system is
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monitored and decomposed into frequency components. The standard deviation of the
side lobes obtained from the amplitude-frequency characteristic is used for fault detection.
During the transient states, high-frequency components will gain in amplitude and increase
standard deviation. In the case of a fault, the increase will be significant compared to the
load change. A similar method was used in [17], but instead of the standard deviation,
amplitudes at specific frequencies are used as the indicators of transients. Again, the
current change will cause high-frequency amplitudes to increase and, if the threshold
is reached, the trip signal will be sent to the circuit breakers. Amplitude and frequency
provided by STFT enable detection of under/over-voltage and under/over-frequency in
an AC microgrid [18]. The voltage signal is monitored in real-time, and its magnitude and
frequency change indicate disturbances in voltage magnitude and frequency.

S-transform is an extension to the special case of STFT, called the Gabor transform and
the Wavelet transform [19]. ST will, much like STFT, provide the frequency spectrum of the
signal. ST-based islanding detection for distributed generation is proposed in [19]. Negative
sequence voltage and current are transformed and energy spectral content is obtained. Next,
the cumulative sum of consecutive samples’ energy content is calculated. Load change
and other DG trips produce a less significant change in the cumulative sum, which enables
the threshold determination. The protection method for both islanded and grid-connected
microgrid operating mode is also proposed [20]. ST provided frequency spectrum where
high frequencies have shown to be efficient and robust fault indicators independently of
the fault parameters. Moreover, the computational burden of the proposed method is
reduced by using a simplified version of ST, suitable for online calculation.

HHT is an adaptive method for time-frequency representation applied to non-stationary
signals [21]. It was applied for the AC microgrid protection in [22] and compared to ST.
The differential current was processed by HHT and its differential energy calculated and
used as a fault detection parameter. The thresholds are divided into three ranges, for
grid-connected, islanded, and high impedance fault (HIF). After a comparative evaluation,
the authors concluded that HHT is as effective as ST. Multiterminal system protection, as
stated before, has to provide protection at continuously changing system states. In [23]
HHT was applied for multiterminal HVDC system distance protection. As it is used in DC
system fault detection, the transform is used to detect high-frequency components during
transients. Voltage is the input and the output is the distance from the circuit breaker to the
fault location. The role of the HHT is to provide the instantaneous amplitude and frequency
of the signal components, which is later averaged and used for distance estimation. The
algorithm was also implemented for real-time testing, where it showed a 10% error. It
should be taken into account that during the real-time testing, the signal noise is present
and the method does not use any communication.

Wavelet transform (WT) in its discrete form (DWT) is also a popular choice by many
researchers. Wavelets are analyzing functions that adjust their time width to the fre-
quency [24]. The transform decomposes signal to produce a set of coefficients, later used
for fault detection. WT-based transmission line distance protection [25] uses one decom-
position level containing high frequencies for disturbance detection and two levels for
phasor estimation. High frequencies are again used for fault detection, similar to the STFT,
ST, and HHT-based protection methods. For detection, db1 mother wavelet is used, and
for estimation db4. Once the current disturbance is detected, the impedance is calculated
from the estimated current and voltage phasors. The method proved effective, with the
ability to detect HIFs. WT was also applied for DC microgrid protection in [26], where
the second derivative of the current is subjected to the transform. Level 2 WT coefficients’
energy is extracted for the fault indication. However, compared to DWT, wavelet packet
transform (WPT) provides more precise analysis [27]. Both, DWT and WPT use high and
low-pass filters to extract components. In every decomposition level of DWT, only the
low-frequency component is again decomposed by a low and high-pass filter. In the case
of WPT, both components are decomposed, making it more accurate. In [27] a WPT-based
fault detection of a photovoltaic system is proposed. As a fault indicator, level 2 coefficient
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(500–750 Hz) energy of voltage and impedance are used. Recently, another WT method,
called an un-decimated wavelet transform (UWT), was introduced for fault detection.
It was used in [8], where the authors find UWT more suitable than DWT and WPT for
real-time fault detection. It is also stated that the method is less sensitive to noise.

Considering the amount of information obtained by transforming a signal into the
frequency domain, ST, WT and HHT provide a more detailed observation compared to
the STFT. The frequency resolution of the STFT depends strongly on the window size.
Since the window size of STFT is fixed, a long window will have a problem detecting short
perturbations, while a short window will poorly depict low frequencies. This problem
is overcome with ST using the time and frequency dependent window function and WT
with variable frequency resolution. These features are better suited for the analysis of
non-stationary signals, which is the case when detecting faults/disturbances. However,
choosing a suitable “mother wavelet” and the appropriate decomposition level is a chal-
lenge when using WT. HHT uses an adaptive basis function, making it suitable not only
for the analysis of non-stationary but also non-linear signals. However, mode mixing in the
Empirical Mode Decomposition (EMD) part of HHT presents a problem when intermittent
waves occur at a lower-frequency signal [28]. In addition, complex methods have a more
complex implementation, which increases the response time. In contrast, the STFT uses
a simple algorithm based on the DFT. The DFT has already been implemented in digital
protection relays [29], so it can easily be adapted for this purpose.

Over the past few years, intelligent classifiers established themselves as a reliable
choice for fault detection, usually combined with one of the field transform-based methods.
Decision trees, artificial neural networks, naive Bayes, and support vector machine are
often used as classifiers. An example of the direct application of intelligent classifiers for
fault detection is presented in [30]. Artificial neural network’s (ANN) inputs are voltage
and current time signals and outputs are binary variables that indicate whether the fault
is detected and the direction of the fault. The method proved reliable with an accuracy
of 99% and section identification accuracy of 100%. However, the time signal is usually
transformed using field transform-based methods first. Features are then selected from
the transformed signal and fed to the intelligent classifier. For example, when WT is
a feature provider its output coefficients are used for feature selection. DWT provided
features to k-Nearest Neighbours (k-NN) [31] and Bayes [32] classifiers for power system
fault detection. Both the Bayes and the k-NN classifiers showed capable of detecting HIFs
among other transients. For the microgrid fault detection, DWT is combined with support
vector machine (SVM) in [33] and decision tree (DT)/random forest (RF) in [34]. The
mentioned SVM-based protection uses a standard deviation of the coefficients obtained
by DWT as classifier input. Moreover, a single SVM and SVM ensemble is tried and the
ensemble method was proven to be more effective. DT and RF-based protection used the
change in energy, Shannon entropy, and standard deviation of DWT coefficients as the
features. Both methods proved accurate, but RF faced implementation issues. In [35], HHT
provided features in the form of energy distribution and standard deviation of the signal
component amplitude and phase. ANN classifier was used and achieved 92.85% accuracy.
The same classifier was used with ST for fault detection in a radial distribution system.
Again, various features such as maximum amplitude and frequency of the S-matrix and
its standard deviation and entropy were extracted and used for model training. A simple
form of ANN, feed-forward neural network (FFNN) was used as a classifier for ST-based
fault detection in a distribution system in [36]. The used features included the standard
deviation of the Smax-matrices along with their means and skewness. In [37], the microgrid
protection used STFT to extract features from the voltage signal and DT/RF for detection
and classification. The features were extracted from the main frequency contour. Some of
the features are the average, root mean square (RMS), and kurtosis. The method proved to
be very accurate. Finally, clustering and classification of pulsed loads on a naval shipboard
power system presented in [38] also use STFT of current signal for feature vector extraction.
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The contribution of this paper is the development of a protection method based on the
Short-time Fourier transform (STFT) and intelligent classification. Since the STFT is merely
investigated as a feature provider, in this work it will be combined with different classifiers.
The employed classifiers are logistic regression, naive Bayes, k-nearest neighbours (k-NN),
DT, SVM, and AdaBoost. PV-based microgrids with battery energy storage systems are
becoming increaasingly common, which is why it was selected as a case study.

Section 3 presents STFT-based fault detection method and applied Machine learning
methods. In Section 4 microgrid simulation setup is described together with the STFT
parameters and classifier evaluation method used. Section 5 offers a results of the proposed
method, and Section 6 concludes the paper.

3. Short-Time Fourier Transform Based Fault Detection
3.1. Proposed Method Overview

The input signal that is decomposed to the frequency components is current of a
DC-DC converter interfacing a BESS and its DC bus. Short-time Fourier transform (STFT)
is then used to obtain the frequency feature vector. Based on these features, the intelligent
classifier generates the system state at a given time window. System states are marked as
neutral, fault, and load change. The schematic overview of the fault detection method is
shown on the Figure 1.

Figure 1. Schematic overview of proposed short-time Fourier transform (STFT) based fault detection.

3.2. Short-Time Fourier Transform

When Fourier transform is applied to a discrete-time signal the result is not always as
theoretically expected. In case of a sinusoidal wave, the expected transform output is peak
at the corresponding frequency bin. However, in reality a spectral leakage occurs, causing
the frequency response of the wave to be dispersed across the frequency spectrum. The
reason for this are discontinuities at the boundaries of the observation interval. A periodic
extension of the signal is erroneous as it includes discontinuity [39].

Window functions are generally introduced to reduce spectral leakage [39]. The
goal of such functions is to reduce the order of discontinuity at the boundary, which is
accomplished by signal smoothing near the end of interval. At the boundary, the signal is
brought to zero. There are many window functions with various characteristics available.
Figures of merit are highest side lobe level, side lobe fall-off, 3 dB bandwidth, etc. If the
amplitude of the frequency spectrum components is to be determined, the flat-top window
should be used.

Every window function is decreasing to zero at boundaries (except rectangle). If the
signal is windowed in consecutive intervals, part of the data will be lost, so windows
overlapping is required. STFT of a discrete time domain signal x(n) is given with equation:

STFT(n, k) =
N−1

∑
n=0

x(n)w(n−mH)e−j 2π
N kn

where n is the sample index, k the frequency index, N the interval length, w(n) the window
function, m the position of the window and H the hop size between successive windows.

The current signal decomposed in frequency components is shown in Figure 2. During
the regular operation, DC current is almost flat. As can be seen, the power is concentrated
at the main lobe (DC component of the observed signal). During current transients (faults
or load changes), the power concentrated in the main lobe is dissipated over the entire
frequency spectrum, i.e., magnitude of the side lobes will increase. As can be seen from the
figure, the change in amplitude of the frequency components is significant during faults.
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The largest change occurs at frequencies corresponding to the “edges” of the side lobes
(marked with red dots). Therefore, this occurrence can be used in a fault detection algorithm.

Figure 2. STFT of the pre-fault and fault current signal.

3.3. Applied Machine Learning Methods

Since the labelled dataset, i.e., each feature vector in the dataset is a member of a class,
is available, machine learning (ML) methods suitable for supervised learning were used.
In general, there are two main categories of the ML methods used for discriminative tasks.
Parametric methods assume that the data points are subject to an unknown distribution.
Consequently, they model a conditional distribution P(y|x), which assigns data points
to one of the predefined classes by the principle of maximum probability. In this work,
two discriminative methods were used: Linear regression and Naive Bayes classifier.
These methods are chosen due to their high interpretability and appropriate capacity.
Nonparametric methods do not assume the underlying dataset distribution. Hence, these
methods heavily depend on available dataset. Availability of an appropriate dataset
can yield with superior models compared to the parametric methods, but at the cost of
interpretability loss. In this work, the following nonparametric methods are used: k-
Nearest Neighbour (k-NN), Decision Trees (DT), Support Vector Machine (SVM)—dual
formulation, and AdaBoost. The mentioned parametric and non-parametric methods are
explained in great detail in [40].

Modern neural networks comprise a large set of nonlinear transformations. Conse-
quently, their ability to correctly classify a given sample outperforms classical ML methods.
The training of neural networks requires significantly more data compared to the classical
ML methods. Furthermore, neural networks trained on an insufficient dataset lose their
generalization ability. Additionally, an overexpressive neural network has a slower re-
sponse time during the inference phase. With that said, this work focuses on simpler and
faster classical methods that are proven to be sufficient for the given task.

4. Experiments
4.1. Simulation Setup

Matlab/Simulink simulation model is a PV-based microgrid with lithium-ion battery
energy storage system (BESS). The PV arrays are connected via buck and the BESS via a
bidirectional buck-boost DC-DC converter (Figure 3). The microgrid is not isolated, its DC
bus is connected to the distribution grid via a voltage-source converter (VSC). The BESS’s



Energies 2021, 14, 277 7 of 14

converter is in the constant current control mode. PVs are in the Maximum Power Point
Tracking (MPPT) mode, with their irradiance and temperature values fixed. The microgrid
parameters are given in Table 1.

PP fault is simulated by short-circuiting the terminals of the converter that connects the
battery to the bus. Fault resistance ranges from 0.1 to 20 Ω, so high impedance faults (HIF)
are included. Load change is simulated by setting the step change of the current reference.

Figure 3. Microgrid model with fault location used in the experiments.

Table 1. Microgrid parameters.

Parameter Value

PV array 44 kW
Line resistance 0.641 Ohm/km

Line inductance 0.34 mH
Line capacitance 0.1 µF

Line length 0.3 km
DC link capacitance 20 mF

Bus voltage 500 V
Battery pack nominal voltage 120 V
Battery pack nominal power 12 kWh

Battery pack SOC 90%

4.2. STFT Parameters

Size of the time horizon window directly affects the frequency resolution. Used
window sizes are 16, 32, 64, and 128 samples [17]. Consequently, the feature vector size
depends on the window size used, which is 8, 16, 32 and 64, respectively. The obtained
dataset contains approximately 43,500 data points. The accumulated dataset sufficiently
covers all test cases. The dataset is scaled to zero mean and unit variance for every feature.
The sampling frequency of today’s digital relays is 10 kHz, so this frequency was used for
data sampling. Hop size used is four samples to keep successive windows overlapping
rate relatively high and detection time low. In this work, Tukey window is used because it
smoothly settles data to zero while it does not reduce the processing gain significantly [39],
making it suitable for transient analysis. Also, its parameter α allows adjusting the taper
size, which affects the window function frequency response. Figure 4 shows how window
function changes with the increasing α. For α = 0, Tukey window is equal to the rectangle
window, and for α = 1 it becomes the Hanning window. Rectangle window does not
smooth the time signal, so discontinuities at interval ends are present. Hanning window,
however, has a medium impact on frequency resolution and amplitude of the obtained
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frequency spectrum. It is commonly used with random data. Tukey window function is
defined as:

w(n) =


0.5
[
1− cos( 2πn

αL )], 0 ≤ n < αL
2

1, αL
2 ≤ n ≤ N

2

w(N − n) = w(n), 0 ≤ n ≤ N
2

where α ∈ [0, 1], N length of the signal and L = N + 1. α is chosen to be 0, 0.15, 0.35, 0.5,
0.75, 0.9, and 1.

0 10 20 30 40 50 60
Time

0.0

0.2

0.4

0.6

0.8

1.0

Am
pl
itu

de

0
0.35
0.5
0.75
1

Figure 4. Tukey window for different α.

4.3. Feature Selection

The current signal is decomposed into frequency components for every successive
window. Amplitudes at the specified frequency bins are taken as features for the intelligent
classifier, which makes the decision whether there is a fault or not. Frequency bins (edges
of the side lobes) theoretically occur at k fs

N , where k = 1, 2, . . . , N, fs is sampling frequency
and N is half-length of a signal [16]. Hence, these frequencies compose a feature vector
propagated to the intelligent classifier. Since different window sizes are used, the number
of features will increase with the increasing window size. The DC component of the signal
will not be used as a feature because the fault detection has to work independently of the
current magnitude.

4.4. Intelligent Classifiers Evaluation

Various intelligent classifiers were plugged in to demonstrate the robustness of the
proposed method. Due to the stochasticity of the discriminative models, valid performance
estimation is needed. Hence, the classifiers were evaluated using K-fold cross-validation.
This approach splits a given dataset into K equal folds. The classifier is then trained on
K− 1 folds and assessed on a single fold. This procedure is repeated K times with different
folds used for every evaluation. Consequently, a realistic estimation of the classifier’s
performance is obtained. Moreover, it can guarantee that classifier’s performance will be
at least as good as the estimated performance. In all conducted experiments, the value
of K is set to 10. There are different metrics for the performance evaluation of a classifier.
Here we use the multiclass F1-score metric, which is defined as the harmonic mean of the
precision and the recall. For a binary classifier, the precision is defined as a ratio of the
correctly classified positive data points and the positively classified points. On the other
hand, the recall is defined as a ratio of the correctly classified positive data points and the
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points belonging to the positive class. Since the dataset contains a modest difference in
class sizes, a weighted-F1 score takes that into account.

5. Results

The proposed STFT-based protection method was applied to the PV-based microgrid
described above. The pole-to-pole fault was investigated by short-circuiting poles with
resistances from 0.1 to 20 Ω, and load change by setting step change of the current reference
of the DC-DC converter. The results presented in the Tables 2–8 show intelligent classifier
weighted F1-score in percentages for different taper (α) and window sizes. The tables are
separated by an (α) value, since this value determines the effects of the windowing on the
original signal, and thus on the features. The window size should also have a significant
impact, since the longer window provides more features. Note that a longer window with
a fixed hop size limits feature variation.

Table 2 shows the results for the rectangle window (α = 0). Here the window function
has no effect on the data, i.e., the data is multiplied by one. The absence of windowing does
not seem to bother nonparametric methods, as they show an accuracy of over 97%, except
for AdaBoost. Decision Tree achieved the best score of 98.74%. The k-NN is slightly lower
at 98.63%. Both scores are achieved for window size 128. As far as the parametric methods
are concerned, the score of logistic regression ranks with the nonparametric methods.
Naive Bayes has a problem with longer windows, while the first two show good results.

Table 2. Cross-validation results (α = 0).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 97.30 97.30 97.45 97.75
Naive Bayes 96.44 92.04 72.21 59.30
k-NN 98.06 98.13 98.28 98.63
Decision Tree 98.12 98.19 98.45 98.74
SVM 97.35 97.31 97.38 97.29
AdaBoost 84.37 66.32 90.07 80.85

Increasing α from 0 to 0.15 affects the edges of the window function, which are now
brought to zero. This change has the biggest impact on the Naive Bayes classifier, whose
performance is down by 4% to 45%. Logistic regression and SVM experience performance
decrease for the window size 16, while AdaBoost increases its performance for the same
window size. Other classifiers experience only a slight change in performance.

Table 3. Cross-validation results (α = 0.15).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 83.81 97.30 97.31 97.67
Naive Bayes 50.21 69.91 60.37 55.26
k-NN 97.59 97.99 98.18 98.72
Decision Tree 97.56 98.16 98.36 98.78
SVM 92.17 97.29 97.30 97.30
AdaBoost 88.36 67.56 89.22 78.69

The increase from α = 0.15 to 0.35 does not seem to have much impact on the
nonparametric methods, with the exception of AdaBoost, which now demonstrated better
results in two out of four window sizes, and SVM, which lost high performance for
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window size 16. For this taper size, the k-NN shows the best result, with Decision tree
closely following. Naive Bayes remains fairly inaccurate as can be seen from Table 4.
Logistic regression also kept high performance for all windows except the size 16.

Table 4. Cross-validation results (α = 0.35).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 88.47 97.30 97.40 97.57
Naive Bayes 65.30 87.39 55.27 55.41
k-NN 97.52 98.05 98.18 98.95
Decision Tree 97.64 98.13 98.42 98.79
SVM 89.63 97.30 97.34 97.23
AdaBoost 88.04 94.18 86.01 94.92

Increasing α to 0.50 results with remarkable results, as k-NN and Decision tree score
increase above 99% for the window size 128. Logistic regression and SVM again increased
their score above 90%. AdaBoost also increased its score above 90% for three out of four
windows with a significant reduction in the score for window size 32 compared to α = 0.35.
Naive Bayes increased its score to 96.79% for window size 32, but the score for other
windows remains unsatisfactory.

Table 5. Cross-validation results (α = 0.50).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 91.84 97.30 97.45 96.65
Naive Bayes 74.49 96.79 62.48 52.07
k-NN 97.63 98.09 98.43 99.11
Decision Tree 97.74 98.27 98.56 99.10
SVM 93.85 97.33 97.37 97.45
AdaBoost 92.70 80.87 95.65 96.31

Further increase of α to 0.75 results in only a slight change for nonparametric methods,
again with the exception of AdaBoost. The logistic regression also shows a slight change
with an decrease of 1% and 2% for the window sizes 128 and 16. Naive Bayes is still unable
to achieve satisfactory results as its score is below 85%. AdaBoost has continued the trend
of increasing its score, with the lowest score being 88.25% which is an acceptable result.
k-NN, Decision tree and SVM remain consistent with their previous scores.

Table 6. Cross-validation results (α = 0.75).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 89.98 97.29 97.05 95.33
Naive Bayes 75.66 84.96 57.46 46.28
k-NN 97.62 98.03 98.31 99.14
Decision Tree 97.60 98.11 98.54 99.08
SVM 91.66 97.29 97.33 97.59
AdaBoost 92.87 88.25 96.44 96.24
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As α approaches the value 1, all classifiers except Naive Bayes score above 90%
(Table 7). k-NN and DT still have the best score, followed by logistic regression and SVM.
AdaBoost achieves score above 90% for all windows sizes for the first time. In contrast,
Naive Bayes scored worse for the three of the four window sizes.

Table 7. Cross-validation results (α = 0.90).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 96.31 97.30 96.29 95.07
Naive Bayes 73.26 81.91 52.41 47.54
k-NN 97.59 97.92 98.35 99.16
Decision Tree 97.44 98.23 98.39 99.09
SVM 91.76 97.30 96.96 97.49
AdaBoost 91.58 95.29 96.77 96.12

Finally, for α = 1 (Hanning window) all classifiers except one score over 93% for all
window sizes. The decision tree shows the best score with 99.33% for the window size
128. k-NN with score 99.28% for the same window size is very close to the best score. The
score of SVM and AdaBoost increased about five percentage points for window size 16,
compared to α = 0.90. Naive Bayes recorded a significant increase in score, achieving over
88% for three out four window sizes.

Table 8. Cross-validation results (α = 1).

Window Size

16 32 64 128

Intelligent Classifier

Logistic Regression 95.88 97.33 96.98 96.22
Naive Bayes 88.15 93.82 89.71 48.91
k-NN 97.87 98.09 98.51 99.28
Decision Tree 97.92 98.16 98.75 99.33
SVM 96.20 97.35 97.32 97.50
AdaBoost 95.42 93.74 97.23 95.92

The Decision tree classifier achieves the best overall score with 99.33% for the Hanning
(α = 1) window function and window size 128. The k-NN comes very close as the second
best result with 99.28% for the same settings. Both classifiers proved to be consistent and
reliable, independent of the window and taper size, with a score of over 97% for all the
examined cases. The SVM is also reliable, with a score over 96% for window sizes 32, 64
and 128 for all taper sizes. However, for window size 16, the score varies from 89.63 to
97.35%. Logistic regression, although parametric method, performed similar to the SVM.
Its score was above 95% for window sizes 32, 64, and 128, but in the range of 83.81-97.30%
for the window size 16. AdaBoost behaves differently for different window sizes. Window
sizes 16 and 64 have the best results for α = 1, 32 for α = 0.90, and 128 for α = 0.50. Its
best overall score is 97.23%, for Hanning window and window size 64. Naive Bayes is also
depend on the taper and window size. The best score is achieved for window sizes 16,
32 and 64, where it exceeds 89% for a few cases. For window size 128, however, the best
overall score is only 59.30%.

The interpretability of parametric methods could reveal information about features.
The high score of logistic regression implies that classes of data points are linearly separable.
Furthermore, the basic assumption that makes Naive Bayes classifier is that all features
are independent. Its poor performance implies that the features used in this work are not
independent, which is reasonable, since the STFT is used for feature extraction.
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6. Conclusions

In this work, a fault detection method based on short-time Fourier transform and intel-
ligent classification is implemented in a DC microgrid environment. Different parametric
and nonparametric classifiers were used and evaluated according to the F1-score metric.
Furthermore, different window functions with different sizes were evaluated. Amplitudes
at specified frequency bins turned out to be good features for fault detection, as most
classifiers achieved a score of more than 90%. Decision trees and k-NN proved to be the
best classifiers as they achieved a score of over 97% independent of the window function
and window size used. In addition, both scored over 99%, making them very reliable
for fault detection. SVM and logistic regression also offer a high degree of reliability and
should be considered for implementation for fault detection. AdaBoost has been shown
to be less reliable, but since its score is usually above 90%, it could be considered for fault
detection. However, Naive Bayes has only a small percentage of scores above 90%, so
its use for fault detection could be poor decision. From this it can be concluded that the
window function and the size of the window function have a relatively small impact on
the nonparametric classifiers. Modern fault detection should be based on these classifiers,
with STFT as a suitable feature provider. Given the complexity of the implementation,
less complex parametric methods could be used, i.e., logistic regression, which proved to
be reliable.
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