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University of Zagreb Faculty of Electrical Engineering and Computing

Zagreb, Croatia
ivan.pavic@fer.hr, hrvoje.pandzic@fer.hr, tomislav.capuder@fer.hr

Abstract—Decarbonization of the power system sparked the
the liberalization of electricity systems, from wholesale energy
to balancing services procurement. In Europe, wholesale energy
markets are open, transparent, technology-neutral and coupled
under internal market scheme. Balancing services markets are
divided into balancing capacity and balancing energy markets.
When bidding in the balancing capacity market, a market
participant must consider the day-ahead energy market as well,
as it serves as a reference market for all trades. It must also
consider the balancing energy market which is uncertain in both
the volumes and prices. In this paper we propose a bidding model
for balancing capacity and, consequently, day-ahead energy
market with a formulation robust towards balancing energy
market prices.

Index Terms—Battery Storage, Balancing Capacity, Balancing
Energy, Frequency Restoration Reserve

I. INTRODUCTION

Power systems are transforming. The century long hydro-
thermal domination as both the main power generation units
as well as the main system flexibility providers gradually
vanishes. Power systems are pioneers when it comes to decar-
bonisation, which make sense as the generation of heat and
electricity takes the highest share in the global greenhouse gas
(GHG) emissions with 42% of the total emissions [1], where
the coal power plants alone generate 30% of global GHG
emissions [2]. Currently, more than one fourth of electricity
comes from renewable energy sources (RES) [3], with the
steepest increase in the future capacity additions [1]. In a
nutshell, the controllable coal and other fossil units are being
replaced with uncontrollable RES units.

To cope with such increase in variability and unpredictabil-
ity as well as parallel loss of the main flexibility providers,
the power system must evolve. It must attract new flexi-
bility providers and enable them to participate in flexibility
provision. During the past few years, there is a significant
rise in new flexible technologies, where the lead is taken by
battery storage systems (BSS). Germany alone had in 2018:
125 thousand home BSS (415 MW, 930 MWh), 700 industry
scale BSS (27 MW, 57 MWh, these numbers represent only
the registered projects), 59 utility-scale projects (400 MW,
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550 MWh) [4]. In general, large projects are mostly installed
to provide frequency services, whereas the behind-the-meter
batteries are focusing on increasing the solar self-consumption
and decreasing the overall electricity bill.

The utility-scale BSS is mostly focusing on the frequency
containment reserve (FCR), but since this market is becoming
saturated (total volume in Germany FCR is below 600 MW),
focus is transferred towards the frequency restoration reserves
(FRR), primarily with automatic (aFRR) and less with manual
activation (mFRR). A prerequisite to participate in any of these
markets for a BSS (or any other participant such as demand
response) is the change in regulations and market concepts.
To name some of the changes: transparent pricing mechanism
must be in place, the procurement horizons and the market
resolution must decrease, gate closure times must come closer
to real-time, the bid volumes must also decrease etc. The
European Union set the foundation for these changes through
package of energy measures [5]–[7] where internal European
electricity market (including balancing services) is envisioned.

The novelty of this paper is the development of a bidding
algorithm for BSS which trades on three markets: Balancing
Capacity Market (BCM), Day-ahead Market (DAM) and Bal-
ancing Energy Market (BEM). The proposed bidding model
is primarily used to acquire BCM and secondary DAM sched-
ules. Their prices are considered as deterministic forecasts,
while the BEM market is modeled through robust approach in
order to find the worst case realisation of BEM prices and to
check its influence on the BCM and DAM scheduling.

II. METHODOLOGY

The aFRR and mFRR markets have separate auctions for
upward or positive direction and for downward and negative
direction. The proposed bidding model will cover both direc-
tions. However, in the following text our explanations will
mostly tackle the upward direction due to simplicity, but the
similar reasoning applies for the downward direction as well.

Note that the prime goal of this paper is not to create bidding
on DAM, but only to use it to better coupe with BCM and
BEM bidding strategy. The bidding on DAM is, in a way,
a collateral result. The DAM is pivotal market in European
context and pose as a reference for all other trades, and this
is valid for the proposed model as well.

A. Market Setup
BCM and BEM are dependent markets as the former

allocates/reserves the flexible capacity to stand idle and to be
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available in the latter market. The reserved balancing capacity
(BC) cannot be used for other purposes rather than providing
balancing energy (BE) if the bid is awarded in the BCM.
However, it may not even be used for balancing if the bid
does not get awarded in the BEM. A bidder in the BCM
must consider the uncertainty of the BEM process. While the
volume to be procured in the BCM is a known value (set by
the transmission system operator) the volume to be procured in
the BEM is unknown until close to real-time and depends on
the power system real-time conditions, i.e. on its imbalance.
If the power system is in perfect balance, the BEM market
volume would be zero and none of the bidders would trade in
it. If an imbalance does exist, the volume in the BEM will be
procured up to the volume of the imbalance. However, power
system imbalance is highly variable and unpredictable in its
value.

As both markets are based on demand and supply curves
intersections, the price acquired by all participants lies at the
point of intersection – market clearing price. Since the volume
to be procured in BEM is unknown at the gate-closure time of
BCM, the point of intersection, i.e. the market clearing price,
is also unknown and uncertain. The BSS doesn’t have variable
generation costs and it’s only cost for discharge is the cost of
prior energy purchases. Therefore it is highly important for
BSS to consider all the prices during market horizon as they
are the base for its successful trading.

There is a gap in the literature in addressing the balanc-
ing energy uncertainty. Deterministic modeling of balancing
capacity activation [8], [9], [10], [11] can create problems to
BSS [12]. Inability to adhere to the agreed DAM schedule
causes additional balancing costs [13], whereas the inability
to activate the scheduled balancing capacity leads to penal-
ization [9], [11], [14] and eventually disqualification from the
BCM/BEM participation [15]. One of the possible approaches
is stochastic modeling of the balancing capacity activation, as
pursued in [16], [17], [18], [14]. However, it is very difficult to
efficiently couple such BC activation scenarios with the BEM
price uncertainty. Papers [10], [19] and [20] took a different
approach, as they modeled balancing capacity activation under
a robust framework. Such approach showed promising results
as a tool to grasp the BC activation uncertainty. However, all
the reviewed papers observing relevant uncertainty modeled
the uncertain BC activation but with BE price as known input.
In other words, the BC activation is never modeled with an
uncertain price and it is mostly observed as a ratio of the BC
(even in the deterministic models). However, the real-world
BEM holds not only the BC activation uncertainty, but also
the BEM price uncertainty which is correlated with BE. It
means that the BE is not a ratio of the BC, but the volume
that is awarded based on its submitted price as on the any
other market. In this paper we are bridging this gap where
we used robust BC activation to calculate the uncertain BEM
price and to re-position the BCM and DAM bids accordingly.

B. Mathematical Model

This paper leans on the previous work of authors [19]
and [20] where uncertainty of reserve activation was robustly
modeled without BEM modeling. In the cited papers, the

BEM price uncertainty was not modeled but only used as
a deterministic parameter. The robust formulation of reserve
activation from [19] is used in this paper to model the uncertain
system-wide BE needs and to calculate the uncertain BEM
price. This approach allows bid submission on the worst-case
BEM price scenario.

1) Objective Function: Objective function expressed in (1)
has two terms: the deterministic day-ahead timeframe stated in
(2) and the uncertain real-time timeframe stated in (3). The
uncertain parameters are c̃BEM UP

t and c̃BEM DN
t . The objective

function is subjected to constraints (4) - (12).

min
ΞO

{cDAM&BCM +max[cBEM(c̃BEM UP
t , c̃BEM DN

t )]}; (1)

cDAM&BCM =
∑Nt

t=1
(eDAM

t · CDAM
t

− bcBSS UP
t · CBCM UP

t − bcBSS DN
t · CBCM DN

t ); (2)

cBEM(c̃BEM UP
t , c̃BEM DN

t ) =
∑Nt

t=1
(−beBSS UP

t · c̃BEM UP
t

+ beBSS DN
t · c̃BEM DN

t ); (3)

2) Primal Constraints: Equation (4) defines the non-
negativeness of the bidding variables. Total allocated day-
ahead power cannot exceed BSS invertor power limits as stated
in (5) and (6). Equations (7) and (8) state that bid BSS BE
bid, in the real-time, cannot be higher than the allocated BC
volume. BSS state-of-energy (SOE) balance is expressed with
(9), while (10) - (12) secure the sufficient energy to activate
all allocated BC bids.

eBSS BUY
t , eBSS SELL

t , bcBSS UP
t , bcBSS DN

t ,

beBSS UP
t , beBSS DN

t ≥ 0; (4)

eBSS SELL
t /∆− eBSS BUY

t /∆+ bcBSS UP
t ≤ PBSS MAX, (5)

− eBSS SELL
t /∆+ eBSS BUY

t /∆+ bcBSS DN
t ≤ PBSS MAX; (6)

beBSS UP
t /∆ ≤ bcBSS UP

t ; (7)

beBSS DN
t /∆ ≤ bcBSS DN

t ; (8)

soeBSS
t =SOET0+

∑t

τ=1
(eBSS BUY
τ ·ηCH−eBSS SELL

τ /ηDCH); (9)

soeBSS
t + eBSS BUY

t+1 · ηCH − eBSS SELL
t+1 /ηDCH

− Λ ·∆/ηDCH · bcBSS UP
t+1 ≥ SOEMIN, ∀t ∈ T(t̸=Nt); (10)

soeBSS
t + eBSS BUY

t+1 · ηCH − eBSS SELL
t+1 /ηDCH

+ Λ ·∆ · ηCH · bcBSS DN
t+1 ≤ SOEMAX, ∀t ∈ T(t̸=Nt); (11)

SOET0≤ soeBSS
t ≤ SOEMAX, for t = Nt; (12)

3) Uncertainty Set: The maximisation subproblem stated
in (1) is subject to robust uncertainty set C which has three
main parts: the one-time-step balancing energy limits eqs. (15)
- (20), the one-horizon-window balancing energy limits eqs.
(21) - (26) and the balancing energy price limits eqs. (27)
- (30). All the right-hand-side parameters (expressed with
Capital Greek Letters) are calculated from historical data.
Inputs for equations (15) - (20) are the individual time-
step boundaries for UP/DN BE activation, while inputs for
equations (21) - (26) are daily activated balancing energy
boundaries for UP/DN. The algorithm will generate the worst
BE activation distribution throughout day constrained with the
historical BE activation data. The position of BE activation
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variables (beSYS UP
τ,t , beSYS DN

τ,t ) triggers BE price positioning
(cBEM UP

τ,t , cBEM DN
τ,t ) through eqs. (27) - (30). Inputs for

those equations are historical BE aggregated bids taken form
[21]. Aggregated bids are piece-wise linearised as explained
in Section III.

C =
{
beSYS UP

t , beSYS DN
t , cBEM UP

t , cBEM DN
t |

beSYS UP
t , beSYS DN

t ≥ 0; (13)

cBEM UP
t , cBEM DN

t free; (14)

beSYS UP
t + beSYS DN

t ≥ At : αt; (15)

beSYS UP
t + beSYS DN

t ≤ Bt : βt; (16)

beSYS UP
t ≥ Πt : πt; (17)

beSYS UP
t ≤Mt : µt; (18)

beSYS DN
t ≥ Xt : χt; (19)

beSYS DN
t ≤ Nt : νt; (20)∑Nt

t=1
beSYS UP

t +
∑Nt

t=1
beSYS DN

t ≥Φ : ϕ; (21)∑Nt

t=1
beSYS UP

t +
∑Nt

t=1
beSYS DN

t ≤ Ψ : ψ ; (22)∑Nt

t=1
beSYS UP

t ≥ E : ϵ; (23)∑Nt

t=1
beSY S UP

t ≤ Γ : γ ; (24)∑Nt

t=1
beSYS DN

t ≥ Υ : υ ; (25)∑Nt

t=1
beSYS DN

t ≤ Ω : ω ; (26)

cBEM UP
t − ISL

t,i · beSYS UP
t ≥ I IN

t,i : ιt,i; (27)

cBEM UP
t ≤ Kt : κt (28)

cBEM DN
t −ΘSL

t,i · beSYS DN
t ≤ ΘIN

t,i : θt,i; (29)

cBEM DN
t ≥ Pt : ρt (30)

4) Reformulated Model: To create the solvable problem we
rewrite the objective function form (1) to its robust counterpart
in (31) and (32).

min
ΞO

(z); (31)

max
ΞC

[cBEM(c̃BEM UP
t , c̃BEM DN

t )] ≤ z − cDAM&BCM (32)

To solve the min-max problem, the inner maximisation sub-
problem form (32) is transformed to its dual counterpart
and connected with the main problem through strong-duality
equaiton. The final one-level problem is stated in (33) - (45).
Equation (33) represents new objective function, while the
primal constraints from the main problem are rewritten as
(34). Equation (35) represents strong duality equation , while
the dual constraints are stated in (36) - (45).

min
ΞO

(z); (33)

(2), (4) − (12) (34)∑Nt

t=1
[At ·αt +Bt ·βt +Πt ·πt +Xt ·χt +Mt ·µt +Nt ·νt

+Kt · κt + Pt · ρt +
∑Ni

i=1
(I IN

t,i · ιt,i +ΘIN
t,i · θt,i)]

+ Φ · ϕ+Ψ · ψ + E · ϵ+Υ · υ + Γ · γ +Ω · ω
≤ z − cDAM&BCM; (35)
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Fig. 1: Input prices for case studies

αt + βt + πt + µt + ϕ + ψ + ϵ + γ

−
∑Ni

i=1
ISL
t,i · ιt,i ≥ 0 : beSYS UP

t ; (36)∑Ni

i=1
ιt,i + κt = − beBSS UP

t : cBEM UP
t ; (37)

αt + βt + χt + νt + ϕ + ψ + υ + ω

−
∑Ni

i=1
ΘSL

t,i · θt,i ≥ 0 : beSYS DN
t ; (38)∑Ni

i=1
θt,i + ρt = beBSS DN

t : cBEM DN
t ; (39)

βt, µt, νt, κt ≥ 0; (40)
θt,i ≥ 0; (41)

ψ, γ, ω ≥ 0; (42)
αt, πt, χt, ρt ≤ 0; (43)

ιt,i ≤ 0; (44)

ϕ, ϵ, υ ≤ 0; (45)

III. INPUT DATA

The input data can be divided into data used in objective
function (2), primal limits in . (4) - (12), uncertainty set
limits for BE activation volumes in eqs. (15) - (26) and prices
in eqs. (27) - (30). Due to conciseness reasons only mFRR
data is observed in this paper.

A. Objective Function and Primal Constraints

The DAM and BCM prices are modeled as deterministic
where Germany’s historical data from [22] has been used.
Used prices in case studies are shown on Figure 1. For the
case study we will use a battery of 10 MW (PBSS MAX) and
10 MWh (SOEMAX) with charging and discharging efficien-
cies of 0.92. The time-step is equal to Germany Imbalance
Settlement Period of 15 minutes (∆ = 0.25) and the worst
duration of one BE activation is equal to time-step (Λ = 1).

B. Balancing Energy Volumes

To model uncertainty of balancing energy activated volumes
historic data with 15 minute resolution through two years,
2020-2021, for Germany is taken from [22]. The principle how
to create such uncertainty set and what are all the datasets used
can be found in [19] and [20]. Due to conciseness of the paper,
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Fig. 2: mFRR BE Input Parameters, from years: 2020-2021

we will only briefly explain and visualise two datasets used
to model parameters: M in (18) and Γ in (24). All the other
one-time-step parameters are conceptually the same as M , and
all the other one-horizon-window parameters are conceptually
the same as Γ. Figure 2 visualises the used 15-min data for
M (left) and Γ (right).

On the left subfigure, each time-step represents the statistical
view on individual mFRR UP BE activations. It can be seen
that only maximal activations are different from zero, because
in more than 98% of time, the mFRR BE activation is zero.
Also, daily distribution of activations is not uniform but the
activations are higher during the day, especially in morning
and evening peak hours. For example, in time-step 50 (13:00
- 13:15) the peak activation happened of 326 MWh.

On the right subfigure, each time-step represents the statisti-
cal view on the up-to-that-time-step summation of activations
(from τ = 0toτ = t). Once again, this plot shows how the
maximal activation curve is significantly higher than, e.g. 95%
percentil curve. We can again see how the significant increase
in maximal curve during the morning peak hours after which
saturation occurs.

C. Balancing Energy Prices

To model uncertainty of balancing energy prices historic
data (aggregated bids) with 4-hour resolution through one
month, June 2021, for Germany is taken from [21]. Figure
3 visualised the used 4-hour data (for period 16:00-20:00) for
up (left) and down (right) products. The figure 3 is divided into
three parts which are following our thought process to get the
right data format: subfigures 3a and 3b are showing the real
data curves accepted at BEM for 30 days, subfigures 3c and 3d
are showing monthly statistical properties of the curves, while
the subfigures 3e and 3f are showing the piecewise linearized
min/max and median price curves.

The first step was to visualise and understand the price
curves. From subfigures 3a and 3b it can be seen that the
curves are always monotonically increasing/decreasing, but
also they are often increasing with higher gradient as the
volume increases (convex curves). The second step was to
compress all the curves into several families of curves which
can later on act as different uncertainty budgets in the simu-
lations. We created those families as a percentiles of the real

curves as shown on subfigures 3c and 3d. The behaviour of
those curves is similar to those from subfigures 3a and 3b.

Finally, for our model we need to have linear boundaries
for BE prices. Therefore we need to linearise the prices.
Due to monotonic and convex nature of the curves, we can
piecewise linearise the curves without the need of binaries. As
an example, we chose two curves from statistical observation:
minimal/maximal (for up and down reserve, respectively) and
median. Those two curves (min/max - black and med - red)
and their piecewise linear conuterparts (the purple and green
lines) are shown on subfigures 3e and 3f. From our model
standpoint, the worst case of BE price forming is lowest price
for BE up, and the highest price for BE down. This means that
purple or green lines are acting as lower/upper (for up/down
direction) boundary for BE price which is modeled in eqs.
(27) and (29). Additionally, the upper/lower (for up/down
direction) boundary for BE price are min and max prices
shown as blue and orange lines and modeled with eqs. (28)
and (30).

IV. RESULTS AND DISCUSSION

We conduced the results for one day at the beginning of July
2021 (Sunday July 4th). Used prices are shown on Figure 1.
Four case studies are devised:

1) Case study 1: BEM prices are not considered in objective
function (deterministic prices c̃BEM UP

t and c̃BEM DN
t with

value zero)
2) Case study 2: BEM prices are taken from one exact

date (deterministic prices c̃BEM UP
t and c̃BEM DN

t with real
value). On Figure 1 it can be seen that c̃BEM DN

t appears
from 09:30-11:00, while c̃BEM UP

t is zero throughout day
as there is no activation in that direction.

3) Case study 3: BEM prices are robustly modeled with
min/max curves (black) from Figures 3e and 3f.

4) Case study 4: BEM prices are robustly modeled with
median curves (red) from Figures 3e and 3f.

Figure 4 show all bidding variables results. Figure 4b
shows different behavior around the hours when down mFRR
activation happens. This can be seen as preparing of BCM and
DAM bidding for known real-time activation and its prices.
This case is not realistic and can negatively impact the day-
ahead bidding. Figure 4c shows that BEM up bidding from
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(b) Real mFRR Down BE Curves for 30 Days (June 2021)
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Fig. 3: mFRR BE Bid Plots for June 2021 for 4-hour Bidding Period: 16:00-20:00

17:00-20:00 is advisable even for the worst-case BEM price
evolution. It accordingly prepares the BCM and DAM bidding
around that period. Figure 4d shows that bidding with median
vs worst price evolution do not introduce much differences in
BCM and DAM bidding as we change the price inputs for all
bidding periods in a rather similar fashion and the scheduling
stays the same.

V. CONCLUSION

The proposed approach shows promising results as it can
be used to better value the uncertainty of BEM prices in a
day-ahead timeframe. As a future direction, such uncertainty
modeling should be tested on a larger number of case studies
(different prices and balancing services) to adequately asses
its applicability. The second point in future work is adding
BE volume uncertainty in state-of-energy equation to create
models tackling both price and volume uncertainty.
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