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Abstract—In this paper, we present a novel method for detect-
ing high-impedance faults (HIFs) in DC microgrids. HIFs are
more difficult to detect than other types of faults because their
voltage and current values are not significantly different from
those under normal operating conditions. We propose a recurrent
neural network (RNN)-based method that can detect events from
the temporal behaviour of a current signal, including HIFs and
load changes. The method proves to be accurate, distinguishing
between HIFs and other waveforms with a high score above 95%
on accuracy and F1-score metrics.

Index Terms—DC microgrid, fault detection, recurrent neural
network, high-impedance fault

I. INTRODUCTION

The concept of microgrids was introduced in response to an
increasing integration of distributed energy resources (DERs)
into the power system [1]. DERs are grouped with the local
loads to form entities that can operate in a grid-connected or
an islanded mode. In the grid-connected mode, bidirectional
power exchange is possible to either compensate the difference
between the DER generation and the load or to send excess
energy to the grid. In the island mode, the microgrid operates
independently of the grid, increasing the reliability of the
power supply when grid failures occur [2].

Proper microgrid operation requires meeting certain tech-
nical challenges, including the development of a suitable
protection system that allows a microgrid to operate safely
[3]. A microgrid operates in different modes (grid-connected
or islanded), and each of these modes includes a variety of
operating conditions due to the inclusion of DERs, loads and
storage systems, which affect the protection requirements dif-
ferently. In addition, there are renewable energy sources (RES)
that are usually connected through an electronic converter and
therefore have an unconventional fault response.

As for the type of fault, there are low-impedance faults
(LIF) that cause high currents destructive for electrical equip-
ment. These types of faults are relatively easy to detect
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using conventional protection methods such as the overcurrent
protection, as their fault response is quite different from other
transients occurring in the system. However, for the high-
impedance faults (HIF) the conventional protection methods
are insufficient [4]. The magnitude of HIF current is much
lower and less destructive than that of a LIF. However, it is
impossible to set clean thresholds for conventional protection
because other transients, such as load changes, could trigger
them. Therefore, there is a need for an efficient fault detection
of HIFs.

Although microgrids can be quite diverse, they generally
contain DERs, energy storage and controllable or noncontrol-
lable loads. Photovoltaics (PVs) are one of the most popular
RES and are often used together with battery energy storage
system [5]. In addition, there is an increasing number of DC
loads such as electric vehicle charging stations, user electron-
ics, etc. In order to avoid unnecessary power conversions,
these DC devices may be combined into DC microgrids, which
offer various advantages as compared to their AC counterparts.
These include higher efficiency, no power quality issues and
less complex control as there is no reactive power flow and
no frequency control [6]. To further improve the safety of DC
microgrids, this work focuses on fault detection of HIFs in
DC microgrids.

II. RELATED WORK AND CONTRIBUTION

Detection of HIF is challenging due to the low current that
conventional protection cannot detect. Differential protection
is able to detect HIF because it uses a difference in currents
at the ends of a line and reacts when a difference is detected.
Therefore, the differential protection is immune to the value
of the fault resistance. This protection strategy has been
implemented for the protection of DC microgrids in [12],
but even if it proves effective, it has certain drawbacks. It
protects only one element of a microgrid and relies heavily
on communication, which is prone to interference and failure.
In addition, the communication link makes it more expensive
to implement because it has to be fast to synchronise the data.

Different authors have proposed various approaches to HIF
detection. In [7], the incremental resistance measured at the
output of a converter is used as a HIF indicator. However, only
a single converter and its load are observed. In [8], a signal
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Fig. 1. Block diagram of the microgrid.

processing method is also used for this task. The discrete
wavelet transform is used to prepare the current signal for
multi-resolution analysis, and a k-nearest neighbours classifier
is used to distinguish faulty and non-faulty states.

The increasing popularity of neural networks (NNs) for
classification tasks led to the implementation of a Group
Method of Data Handling (GMDH) neural network for HIF
detection in [9]. The input to GMDH NN is the power signal
obtained by multiplying the voltage and current signals, and
the output is a signal prediction. The difference between
the signal prediction and the actual signal is then used for
fault detection, and NN has proven to be a reliable classifier.
However, there is a type of NNs called recurrent neural
networks that are able to extract knowledge from the sequential
data and use it to classify events based on their waveforms.
This concept is highly convenient for detection of HIFs due
to their characteristic waveform that distinguishes them from
other transients. RNN have already been used for the detection
of low-impedance faults (LIF) in microgrids, where it has
proven to be highly accurate [10]. In [11], it was used for
arc fault detection in electric vehicle charging stations and
also showed high accuracy. Therefore, the RNN is considered
a suitable candidate for HIF detection.

The contribution of this work is to develop a HIF fault
detection method for DC microgrids based on the RNN as
an intelligent classifier.

III. SYSTEM DESCRIPTION

The microgrid simulation model was created in Matlab
Simulink software package in accordance with the DC micro-
grid testbed presented in [13], where all information about the
model is available. This RES-based radial microgrid includes
a PV and a battery energy storage along with a DC load.
The connection to the AC grid is via a bidirectional inverter.
The original model of the microgrid includes a flow battery,
but in this work it is replaced by a lithium-ion battery
with similar characteristics. The inverter controls the power
exchange between the microgrid and the utility grid, while the
DC bus voltage is controlled by a DC-DC boost converter. The
battery is connected via the bidirectional DC-DC converter
and is in current control mode. The DC load is modelled as
a constant impedance load. Block diagram of the microgrid is
shown in Fig. 1.

Fig. 2. VSC stages during a short-circuit fault [4].

IV. FAULTS IN DC MICROGRIDS

The main difference in protection of AC and DC systems
arises from different fault responses. In both systems, fast
rising currents of high magnitude occur, but the DC current
has no natural zero crossing. This places high demands on
the speed of fault detection, because the fault current must
be prevented from reaching high values. On the other hand,
HIFs have a specific repetitive pattern that distinguishes them
from other transients that occur in microgrids, but require an
efficient solution for their detection.

A. Low-Impedance Faults

LIFs occur when a pole of the microgrid is short-circuited
to another pole or to earth by low impedance, resulting in a
voltage drop to zero. Since the microgrid considered in this
study contains power converters, a voltage source converter
(VSC) fault analysis is presented. VSC fault response consists
of three stages. The first stage is the capacitor discharge stage,
where the capacitor releases the energy through the cable until
its voltage reaches zero (blue path in Fig. 2). In this stage, the
fault current reaches its peak value, which is much higher
than the nominal VSC current. In the second stage, the fault
current commutes to the freewheeling diodes (brown path).
The current is still significantly higher than the rated current
and there is a possibility that the diodes will be damaged if the
protection does not operate in the first stage. In the third stage
(green path), the AC grid starts to contribute to the fault and
VSC behaves like an uncontrolled full-bridge rectifier, after
which a steady state is reached. The DC-DC converters go
through the same fault stages in case of short-circuit faults.
The fault response of the boost converter includes all these
stages, while the buck converter only goes through the first two
stages. A detailed analysis of the behaviour of the converters
during faults can be found in [4].

B. High-Impedance Faults

As described in the previous section, the detection of LIFs is
relatively simple, as the fault response is quite different from
the normal operating conditions of microgrids. On the other
hand, a HIF fault occurs when a pole comes in contact with
earth or another pole through a high impedance. This contact
cannot be detected by conventional overcurrent protection, but
can have serious consequences such as fire or injury [14].

HIFs are characterised by nonlinear behaviour of the fault
current, which resembles a repetitive reignition current. Ac-
cording to [15], the HIF waveform consists of three parts:
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buildup, shoulder, and nonlinearity. In the buildup stage, the
current rises to its maximum amplitude, followed by the shoul-
der stage. In the last, nonlinear stage, the nonlinear behaviour
of the HIF becomes apparent. To following is proposed to
model the HIF behaviour [15]:

ij+1 = ij −
R · ij + k/i1.2j + 35− VDC sin(ωt)

R− 1.2k/i2.2j

(1)

2nπ + pi/3 < ωt < 2nπ + 2pi/3, n ∈ N0 (2)

where k is the arc constant, i is the HIF fault current,
VDC nominal voltage, and R equivalent fault resistance. The
equivalent fault resistance can be extracted from (1):

R =
1.2k · ij+1/i

2.2
j − 1.2k/i2.2j − k/i1.2j − 35 + VDC sin(ωt)

ij+1
(3)

V. FAULT DETECTION METHOD

The aim of fault detection is to uncover adverse system
conditions that could be dangerous to people and equipment.
This process is performed by monitoring the current and
voltage values that change when transients occur in system. If
the change is significant, i.e. if the values exceed thresholds
applicable to normal operation, the protection system isolates
the faulty section. The problem, however, is that HIFs do not
usually exceed these thresholds, so a different approach is
required for their detection. In general, fault detection is a
classification task, as it converts input states into a discrete
decision on whether a fault is present or not. Neural networks
are particularly good at solving this type of task. Moreover,
neural networks are considered universal approximators and
are able to approximate any function if they have input and
target values. In other words, the function that maps the inputs
to the decision can not only be approximated by the NN,
but it can also be made more complex than just having a
fixed threshold value. Thus, the NN can be trained to detect
HIFs that cannot be detected by conventional protection, which
improves the ability to detect faults in microgrids.

A. Recurrent Neural Networks

There are different types of neural networks suitable for
specific purposes, but they all go back to the standard Feed
Forward Neural Network (FFNN). The architecture of the
FFNN consists of an input layer, one or more hidden layers,
and an output layer. When the FFNN is used for classifica-
tion, the output layer is followed by the softmax layer. The
formulation can be expressed in vector form:

h(t)
1 = σ(U1 x(t) + b1) (4)

where x(t) is the input vector, h(t)
1 is the output of the first

transformation, and σ is arbitrary nonlinear function. The most
commonly used nonlinear functions are sigmoid, tanh, and
rectified linear unit. The matrix U1 and the bias vector b1

transform the input into its representation. The hidden layers

can be stacked so that the output of the first hidden layer is
the input to the second hidden layer, and so on. Expressed in
vector form:

h(t)
k = σ(Uk h(t)

k−1 + bk) (5)

The output layer takes the output of the last hidden layer and
outputs the vector that has dimensionality equal to number of
classes.

o(t) = Un h(t)
n + bn (6)

where h(t)
n is the last hidden layer, and o(t) is the output

layer. The output layer is followed by the softmax layer, which
transforms an output into the probability distribution. The
output of this layer can be interpreted as the probability of
the input sample belonging to the classes. These probabilities
are determined by the equation:

ŷ(t) =
exp o

(t)
i∑K

i=1 exp o
(t)
i

. (7)

where exp is a standard exponential function, o
(t)
i is an

element of the output vector o(t), K is a number of classes
and ŷ(t) is a vector containing probabilities, of which the class
with the highest probability is taken as the one to which the
input belongs.

The recurrent neural network is an extension of the FFNN
that is able to take into account previously seen inputs when
classifying the current input. In other words, it extracts knowl-
edge from the sequence and uses it to improve its classification
ability. This behaviour is achieved by adding an additional,
recurrent layer to the standard FFNN. The past states of the
hidden layer are taken into account when generating an output
of the hidden layer at this time step. This is shown in the
following equation for the first recurrent layer:

h(t) = σ(U1 x(t) + W1 h(t−1)
1 + b1) (8)

where h(t−1)
1 is the past state of the hidden layer. The recurrent

layers can also be stacked so that the output of one recurrent
layer is the input to the following one. This is shown in Fig. 3,
where on the left side can be seen a recurrent connection with
a hidden layer. On the right side is unfolded representation of
the architecture. The output is generated at each time step and
depends on the current input, but also on a previous hidden
state that takes into account a previous input.

The training procedure aimed at minimising the loss func-
tion is the same for both FFNN and RNN. The loss function
is defined as:

L(x(t), y(t)oh ,θ) = −
K∑

k=1

y(t)oh,k ln ŷ(t)k . (9)

where y(t)oh is the one-hot representation of the label y(t),
and ŷ(t) is the output of the model obtained from (7). The
parameter θ represents all trainable parameters of the NN,
including the matrices Uk and the bias vectors bk, k ∈ [0, n]
where n is the number of layers. These parameters are found
in the training phase, where the gradient descent algorithm is
used to minimise the loss function.
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Fig. 3. Recurrent neural network with recurrent connections between hidden
layers [16].

B. Dataset

The training of the RNN is performed on a dataset that
contains different events that must be distinguished. In this
case, the dataset consists of events that characterize the be-
haviour of the microgrid in the normal operating state and in
the faulty state. For example, the normal operating state is a
load or generation change, while a fault state is LIF or HIF.
The task of the classifier, in this case the RNN, is to distinguish
between these events by learning specific patterns for each of
the events. As the RNN is used, each event in the dataset is
stored as a sequence. Therefore, the dataset contains normal
operating conditions without the transients, the load change
events, and the HIFs.

The behaviour of the HIF, as described in section IV-B,
depends on several parameters: initial current level, fault
resistance, DC voltage, and frequency of oscillations. Since
the microgrids DC voltage is constant, the other parameters are
changed to produce different characteristics of the HIF. These
are shown in Fig. 4. The fault occurs after the 30th sample
in the sequence, where the current rises sharply and continues
its nonlinear operation. The figure also shows two different
oscillatory behaviours depending on the frequency of the
fault. Fault locations are set at all laterals of a microgrid and
measurements are taken at each. The number of measurements
per event is given in Table I.

Fig. 4. High impedance faults of different characteristics.

TABLE I
NUMBER OF SEQUENCES PER EVENT.

Event Number of sequences
Normal operation 100
Load change 100
HIF 200

C. Fault Detection with RNN

An overview of the method is provided in Fig. 5. The current
measurement of the lateral is taken by the RNN classifier
which determines the event based on the signal waveform.
The classifier is trained on the training dataset, obtained
by randomly selecting 80% of the data from the original
dataset. The remaining unused samples from the original
dataset are used for validation. The validation dataset thus
contains samples that the classifier did not see during training,
which is important to properly determine the performance of
the classifier.

The classifiers architecture chosen is as follows: the fully
connected later is followed by the six recurrent layers, which
are followed by the fully connected layer and softmax function.
The number of nodes per layer is set to 400.

VI. RESULTS

As elaborated in the previous section, the RNN is trained on
the dataset containing normal operating states of the microgrid
and HIFs. The performance of the RNN is measured using two
score metrics, accuracy and F1-score, on a validation dataset.
Accuracy is typically used score metrics when for machine
learning models, while F1-score is intended for situations
where the dataset is unbalanced and thus represents a more
conservative score. The results are shown in the Table II.
The scores achieved are high, with the F1-score being slightly
lower than the accuracy score.

This high score shows that the RNN classifier correctly
detected the waveform patterns of the HIFs and distinguished
them from the other waveforms. The static operation of the
microgrid, where no transients occur, is relatively easy for
the classifier to learn because it is an almost flat line with
additional noise. The load change is transient, but after the
initial change in current level, static operation is reached again.
In contrast, the behaviour of the HIF is not static after it
has occurred. The current continues to oscillate and RNN has

Fig. 5. Overview of the method.

TABLE II
CLASSIFICATION SCORES.

Accuracy F1-score
98.79 % 95.52 %
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captured the characteristics of this behaviour that allow detec-
tion. In addition, the RNN classifier is shown to detect HIFs
with different impedances and nonlinear behaviour, which is
important for practical implementation as failure to account
for a variable fault response will lead to ineffectiveness of the
protection. The RNN offers the possibility to extract enough
knowledge from the data so that this is not a difficulty.

The fault detection time depends on the waveform of the
signal, since the recurrent neural network is used. In this
case, the RNN recognizes a spike and subsequent nonlinearity.
However, it correctly classifies the HIF after the first lobe has
occurred because the initial response is very similar to the load
change. The width of the lobe is determined by the frequency
of the nonlinear oscillation. The widest lobe used in this study,
which is the worst case for fault detection time, lasts 40 ms.
However, this time can also be as short as 10 ms. Comparing
the fault detection time with that in [9], it is longer, but the
waveforms used are different from those in this study, which
affects the detection time.

VII. CONCLUSION

Detecting HIFs is a difficult task for conventional protec-
tion because of the low current. However, the characteristic
waveform of a HIF can be used for its detection. Therefore,
this paper presents a RNN-based method for fault detection.
The RNN is a type of NN that is able to capture a temporal
behaviour of the signal or detect certain patterns in the
signal waveform, which makes it an ideal candidate for HIF
detection. The proposed method uses a current signal as input
and produces a prediction of the event that occurred. The
method scored high, above 95%, on both accuracy and F1-
score metrics.
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